Monday, 16 June 2014

Evolution Bucket List: alpha 1

(This is a repost from

Humans have a penchant for making “best of” (Top 10, Top 5, anything from Buzzfeed, ...) lists. David Letterman’s Top 10 lists are, of course, a long-standing classic. Many magazines and websites have Best Of lists for the year: best photos, best movies, etc. And now we have “best of” YouTube collections for pretty much anything that might interest you. It seems to be human nature to make such lists – although the characters in the movie High Fidelity argue it is a tendency more common or more enhanced in men than women.

The ultimate best-of lists are Bucket Lists – the things you need to see/do before you die. Presumably these are the 100 (or whatever number of) things that would enrich your life experience more than any other. The things that – if you didn’t do them – would have you looking back from the grave and thinking “Damn, I never went cave diving” or “Why didn’t I ever see a Broadway Play?” or whatever. Sometimes we see global bucket lists presumably applicable to all humanity (or perhaps the “average” human), but other times we see more targeted Bucket Lists for things such as Sporting Events, Fishing, Skiing, Reading, Dining, Sex, and so on. This got me to thinking: what would be an Evolution Bucket List? A Google search suggests no such list exists and so I figure we should develop one.

I will start the ball rolling with some initial ideas. I hope folks will suggest additional options in the comments. Perhaps with a few versions of the list batted around, we can develop the optimal set. What should be on such a list? Several categories stand out. (1) Locations where organisms are particularly special, such as Galápagos. (2) Particular organisms of evolutionary significance or novelty, such as the platypus. (3) Locations of historical/contemporary importance to the study of evolution, such as Darwin’s home. (4) Amazing interactions between organisms, such honey guides and honey badgers or the parasitic isopod that replaces the tongue of some marine fish. (5) Specific dramatic or important fossils or fossil sites, such as the Burgess Shale. So I will start our group effort by suggesting some items for the Evolution Bucket List: some I have already experienced, some I expect to experience, and some that would be great to experience but that I probably never will. 

Things already in my bucket

1. Galápagos Islands. For me, Galápagos is the single most iconic and inspirational location for someone interested in evolution. Not only did it inspire Darwin and many evolutionary biologists since, but it is home to some of the world’s most unique and interesting organisms: marine iguanasDarwin’s finches, flightless cormorants, tropical penguins, and many others. Of course, we could easily list each of these organisms as separate items on the bucket list but – given that one can knock all of them off in a relatively short time in a relatively small area – I think they are better encompassed as a location. I have been fortunate enough to visit Galápagos many times, although I still haven’t seen a flightless cormorant. BLOG POST

Darwin called them "imps of darkness."
2. Down, EnglandNo location was more instrumental in the development and exposition of Darwin’s theory. It was here that Darwin did nearly all of the work that led us to our modern understanding of life on earth and how it came to be. The most obvious thing to see is Down House (especially his study) and its grounds (especially the Sandwalk). However, what was even more exciting for me was Darwin’s Pub. BLOG POST

Having a pint in Darwin's Pub.
3. ArchaeopteryxDiscovered soon after Darwin published his magnum opus, Archaeopteryx made flesh the intermediate forms between extant groups (birds and reptiles) and was thus a crucial contributor to acceptance of Darwin’s theory. Simply put, Archaeopteryx is the most famous fossil in the world: it is even in MS Word’s spell-check dictionary which, I have just discovered, knows how to spell it better than me. It is also the world’s most beautiful fossil – and spectacular versions can be seen in many museums. I have seen them in the Berlin Natural History Museum and the British Natural History Museum.

The Berlin Archaeopteryx
4. OilbirdsOne of the most exciting things for an evolutionary biologist is evolutionary novelties – species that just stick out in ways that set them apart from even the most closely related species. That is, they are the sorts of species that might not be imaginable if they didn’t actually exist. Oilbirds are my current favorite. They nest in caves and feed on fruit at night, and they echolocate! They are also huge outliers on the evolutionary tree of birds. And they live in spectacular settings in tropical forests. I have seen them in Trinidad both in caves and clicking their way along river corridors at night. BLOG POST

Me shooting pictures of oilbirds. (Photo by Felipe Perez-Jvostov)
5. Carnivorous plantsI was sorely tempted to list another cool animal (mudskippers or leafcutter ants) but I suppose plants might also be important and interesting – at least to some. Being an animal guy, the plants that are most fascinating to me are the ones that seem almost like animals – the predatory plants. Most iconically, this category (actually several independent evolutionary lineages) jncludes pitcher plants, sundews, and Venus flytraps. It is one of life’s guilty pleasure, at least for kids, to catch and “feed” insects to these plants. And, of course, it helps that Darwin was a big fan, even writing a book about them. Indeed, various carnivorous plants are featured to this day in the greenhouse at Down House (PHOTO).

Sundew in British Columbia.

Things reasonably likely to end up in my bucket

6. MadagascarAnother evolutionary marvel. A place, like Galapagos or New Zealand, long cut off from the rest of the world and so able to embark on an independent evolutionary trajectory. In the case of Madagascar, what I would most like to see are lots of lemurs: ring-tailed lemurs, mouse lemurs, and – most importantly – aye-ayes. Surely the aye-aye is one of the most bizarre and amazing mammals in existence – my kids think so anyway. Check out this awesome video True Facts about the Aye-Aye (3.5 million views and counting).

7. Burgess ShaleOne of the most important fossil finds was in the Canadian Rockies where, 500 million years ago, a large mudslide covered an almost intact fauna from the Cambrian Explosion, a period during which animal life exploded in diversity. This site has told us most of what we know about this time, half a billion years age. In fact, I am shocked that I have not already been to the Burgess Shale, given that I grew up only a few hours away (What the hell were my parents thinking not taking me there?) and I still drive through the area all the time. You can even get a guided tour. What could be simpler? Surely, I will soon check it off.

8. Chimpanzees – in the wildOur closest relative, and popularly consider 95+% genetically similar to us – to me! I am captivated watching them in any of the countless BBC videos. It is like a window into the past, in the sense that our common ancestor probably looked a lot more like a chimp than a human. I am pretty confident I will soon knock this one off too, given that I have collaborators working in Kibale National Park, Uganda, where chimpanzees are abundant and easily seen. Yet another reason to do some work there.

9. Platypus – in the wildOK, I suppose some other monotreme, like the echidna, would do in a pinch but the platypus just seems so much more bizarre. In fact, it bedeviled scientists for almost a century, as playfully described in the book titled, wait for it… Platypus. Of course, I envision my encounter will be like the one in David Attenborough’s Life of Mammals – me sitting peacefully on the edge of a pool while a platypus swims playfully (or at least indifferently) about my feet in crystal-clear water. I have already been to Australia but didn’t seek out a platypus at the time, dammit. Yet I will surely be back to Australia soon. In the meantime, I will have to be satisfied with the dusty old male platypus moldering away in the basement of the Redpath Museum. Not quite the same, but inspirational nonetheless.

10. Flying herpsThey don’t really fly, of course: flying has evolved only four times (bats, birds, insects, pterosaurs), but these gliders can be just as amazing. I grew up watching flying squirrels, which were cool enough, but what about flying snakes (VIDEO), flying lizards (VIDEO), or flying frogs (VIDEO)? The snakes can dramatically change direction in mid-air. The lizards extend their ribs until they look like a kite. The frogs were described by Alfred Russell Wallace – the co-discover of natural selection.

Things with varying degrees of unlikeness.

11. Bolas spider in actionLooks like a bird turd. Gives off a moth pheromone. Spins a ball of sticky web on a string and swings it around to catch sexed-up moths in flight (VIDEO). This sight should be the most accessible of these relatively inaccessible bucket list options, given that bolas spiders are widespread, seemingly even near my house. I just don’t know where or how to start looking. (OK. so maybe this one actually is achievable and I should have picked some rarer but equally cool spider.)

Many spiders could make the list. 
How cool is this crab spider waiting for dinner to fly up?
12. Antarctic breeding coloniesAlbatrosses. Elephant seals. Penguins. By the millions. South Georgia Island. The Kerguelen Islands. One of life’s great spectacles. Ironically, I once passed up a chance to go to the Kerguelen Islands. I probably won’t get another.

Penguin (check - Galapagos), Elephant Seal (check - California). Millions of each on a beach in (or near) Antarctica (pending).
13. Killer whales swimming onto the beach to get at sea lionsI must have watched videos of this behavior hundreds of times – truly amazing stuff. Here is one of those VIDEOS – 12 million views. In reality, this spectacle should be reasonably accessible (at least in relation to those that follow) but I am betting the chances are still remote because it happens in only a few places (Península Valdés, Argentina) for only part of the year (Feb–Apr – and episodically even then) and access seems to be strictly controlled.

Just need to get this orca and this sea lion on the beach in the same picture!
14. Hydrothermal vent communitiesEntire communities that thrive independently of energy from the sun. First seen in 1979, these communities of tube worms, crabs, fish, and other critters were too bizarre and unpredicted to be believed – except that we could actually see them on VIDEO. For this I just need a submarine.

15. TylacineIf one is to see a cool marsupial, one couldn’t do better than a Thylacine – the Tasmanian Tiger, in colloquial terms. OK, I know you’re saying well, duh, it’s extinct. But not everyone is convincedand a few of these critters might still be hanging out in the woods of Tasmania. To give a hint of what you might see, check out this chilling VIDEO of the last one alive in a zoo – viewed more than 2 million times. For this I might just need a time machine.

I would trade several thousand kangaroos for one (OK, maybe two) thylacines.

So, there’s my first attempt at an alpha version of an Evolution Bucket List. Please send me some new ideas so we can make a definitive list. If you have actually knocked off the item, then a tiny description like those above would be great – with a video or picture, ideally one you took yourself.

Have at ’er.

Monday, 24 March 2014

Darwin's Pub.

[This is a duplicate of a post on my ecoevo-evoeco blog.]

Surely the greatest contribution that England has made to the world (apart from deep-fried Mars bars) is Charles Darwin. Certainly, then, the most important tourist destinations in England should be sites associated with Darwin. At least, that has always been my opinion. This post is about my failures and successes in attempting to visit Darwin’s haunts – and a few unexpected and uncommon discoveries along the way.

Would Chuck D have partaken?
On my first visit to London a number of years ago, I had half a day to spare and so sought out Darwin’s grave at Westminster Abbey. I showed up at the door, all aquiver with anticipation, only to be told that it was the one day of the year when tourists were not allowed – a special day instead for worship only. Damn. The next time I visited England, I had a whole day to spare (owing to that annoying policy of airlines charging almost double if you don’t stay over a Saturday night) and so I set my sights on a pilgrimage to Darwin’s home, Down House. Seeing his study and walking his Sandwalk, his “thinking path,” would surely be a great inspiration – and it must certainly be on the bucket list of every evolutionary biologist. After arriving in London on that trip, I looked Down House up on the internet and discovered that it was closed for renovations. Double damn. Instead, I visited the British Natural History Museum, where I could at least see the statue of Darwin. This statue figured prominently in a David Attenborough video for Darwin’s 200th birthday that explained how the statue of Richard Owen, who was instrumental in the museum’s history but a vocal critic of evolution, had recently been removed and replaced by this monument to his archrival Darwin.

Westminster Abbey
I visited London again last week, and I promised myself that I would visit both Darwin’s grave and his home. I even checked the opening times of Down House before booking my flight – Saturdays and Sundays only. So, on the Friday after our bioGENESIS meeting (see this post), I set out for Westminster Abbey. After waiting in line for nearly an hour, I finally made it inside. It was crowded and I was awash in hundreds of graves and monuments all over the floor and walls. Where was Darwin? The audio guide didn’t mention him – as I had been certain it would – so I had to ask. It turned out to be a plain white marble slab on the ground. I had expected something more dramatic, maybe with finch beaks engraved on it, but it was still fun to see the grave and compose pictures of it with the backdrop of an institution that – initially at least – felt so threatened by his ideas. After leaving Darwin’s grave, I tried to take a photo of the “grave of the unknown soldier” (definitely on the audio guide) and was promptly informed that photos were not allowed in the Abbey. Oops. I guess no one cares enough about Darwin’s grave to guard against photography. Even so, it was great to see the founder of evolutionary biology buried in the most important religious institution in England. (Writing this, I wonder if Bishop “Soapy Sam” Wilberforce is also in the church, perhaps with a perpetual frown in Darwin’s direction. Or maybe he is in some lesser church, with an even bigger frown.)

Westminster Abbey
The next day I was off for Down House, which proved to be quite a commute from the hotel, as befit Darwin’s desire to escape the city. I was even forced to wait about an hour for the bus from South Bromley to Downe Village (the “e” was added after Darwin’s time to distinguish it from another Down elsewhere). Fortunately, a Starbuck’s was right beside the bus stop, and so I could sip a non-fat no-whip hot chocolate (tastes the same the world over) and edit a paper. Eventually the bus came and about 20 minutes later we stopped at St. Mary’s Church in Downe. From there it was a 10 minute walk along a narrow lane between some fields and I had the great fun of seeing a pheasant prancing about – did Darwin shoot at its ancestors and miss? Down House was amazing, of course, particularly Darwin’s study and his thinking path, where I made a video to ask the pressing question: How did Darwin walk his sandwalk?

I could well have written an entire post about the wonders of Down House: Darwin loved billiards and would play every day with his butler, Darwin would leave his office dozens of times a day just to get a pinch of snuff from the hallway outside, Darwin rode horses until he fell and gave up, and so on. However, what happened after I left proved to be even more surprising and inspiring and so I will turn to that story.

Submitting a paper at Down House.
After about four hours at Down House, I walked back to the church in Downe to catch the bus. I had a few minutes to spare and so I walked around the church (and saw a plaque saying the sundial was in Darwin’s honor) and in the church (where written material explained how Darwin and his butler, Mr. Parslow, were an integral part of the community). As the bus was arriving, I saw a pub across the street from the church – the George & Dragon. Hmmm, I thought, how could I not have a drink in the bar in Darwin’s home town? So I let the bus go by, committing myself to at least an hour in Downe, and walked across the street to have a pint of Guinness. On my way there, I started to wonder. Could Darwin have gone to this pub? It looked quite old – perhaps he stopped in for a beer or two. Or maybe he spent the whole church service there after his beloved daughter Annie died and his faith was thus permanently shattered.

Emma’s church.
I entered the pub and was reinforced in my romantic hope as it looked really old, down to the low ceiling with rough-hewn and sagging support beams. But it still seemed a silly hope, so I started by asking the bartender some leading questions. “How old is Guinness?” – “Oh, hundreds of years.”  “Cool – and how old is this pub.” – “Oh, considerably older than Guinness.”  “Really,” I say, my excitement mounting. “Could Darwin have come in here for a pint.” – “Oh, yes, certainly. In fact, he stayed upstairs while visiting Downe and looking at the house.”  “Awesome. Perhaps he had a pint of Guinness here – just like I am doing.” – “Oh, that seems likely as he did some business here – see the photo and inscription on the wall.”

Darwin’s pub – the George and Dragon
Guinness in hand, I walk over to a framed document, which included a picture of the pub in the old days – originally called the George Inn – accompanied by an excerpt from the Bromley Record, July 1, 1867.

On Tuesday, 11th June, the Downe Friendly Benefit Society held their 17th anniversary at the GEORGE INN where a most excellent dinner was provided by Mr. and Mrs. Uzzell. The chair was taken by Mr. Snow and the vice-chair by Mr. Parslow. After the cloth was removed and the usual loyal toasts and healths of the treasurer C. R. Darwin Esquire and others, had been given …

Be still my beating heart.

Over the next few hours, I sat in a big comfy chair beside a fireplace that might have warmed Darwin (but not me, owing to fire regulations) and drank several pints while bus after bus went by without me. I edited a paper about the evolution of resistance to parasites. I edited the video asking How did Darwin walk his sandwalk? And I generally absorbed the ambiance and reveled in the thought that I might be sitting in the place where Darwin first scribbled his “I think” diagram – perhaps on a bar napkin.

Darwin’s thinking chair?
OK, I realize I am being overly romantic here. Guinness was probably not on tap in 1860. And, if it was, it was probably not available in the George Inn. And, if it was, Darwin’s delicate stomach probably made him gravitate toward easier fare. And bar napkins probably didn’t exist. And, if they did, Darwin probably didn’t bring his quill to the bar. And, if he did, he probably wasn’t thinking about evolution while drinking. And, of course, he probably scribbled his I think diagram somewhere else (indeed, he did so before buying Down House). But the experience was nevertheless inspiring and the scenario at least plausible in that Darwin might have had some eureka moments in the same physical location I was occupying. Certainly, most of my good ideas have come in bars over a pint of beer or a glass of whisky – at least most of my good blog ideas anyway.

Or maybe Darwin would have preferred this sherry - photo by Mike Hendry
So, the next time you’re in England, by all means visit Darwin’s grave and Down House. Marvel at his writing chair. Be inspired on the sandwalk. But – most of all – don’t forget to visit Darwin’s pub. Bring your computer – do some science. Darwin would want you to.

Monday, 24 February 2014

Evolution coming undone in Galapagos: human impacts on Darwin's finches

[This is a duplicate of a post on my eco-evo evo-eco blog.]

I just returned from a short trip (my tenth) to Galapagos. New experiences during the trip prompted further speculations on a phenomenon we had earlier described: human influences on the adaptive radiation of Darwin’s finches.

An oft-repeated mantra is that remote oceanic islands (never connected to the mainland) are natural laboratories for studying evolution. Part of the reason is that they tend to be simple environments, making it easier to disentangle otherwise overly-complicated ecological and evolutionary relationships. One way in which islands are simple is that they often lack human populations, which contributed to the evolution of strange forms that proved to be utterly unsuited for a life with colonizing humans. As a result, the settlement of remote islands by humans often leads to the extinction of local life forms. However, not all isolated populations go extinct when humans colonize, instead they often evolve to suit the new conditions. 

A spectacular male Darwin's finch.
My own foray into island life involves Darwin’s finches in Galapagos. This work obviously follows closely from the insights and work of Peter and Rosemary Grant, and was made possible by an impromptu postdoc I did with Jeff Podos at UMass Amherst. In general, the adaptive radiation of Darwin’s finches is thought to have been driven by specialization of different species on different food types, which has led to reproductive isolation (speciation) through assortative mating by beak size (beaks, songs, and mate preferences are all linked) and natural selection against hybrids (which are poorly suited for either parental diet). With respect to this last point, different “adaptive peaks” are thought to exist in the Galapagos as a result of different food types. For example, large-beaked species evolve to use large/hard seeds and small-beaked species evolve to use small/soft seeds but intermediate beak sizes are rare because intermediate seeds are rare. (I just made and posted a video illustrating this phenomenon.) Darwin’s finches thus diverge onto different adaptive peaks and the few hybrids they produce have intermediate beaks that lack appropriate intermediate seeds on which to feed, and therefore suffer low survival – thus keeping the two species separate.

Yum - a native food!

Our contribution to this story has been the study of two beak size morphs within a single species (the medium ground finch, Geospiza fortis) on the island of Santa Cruz. We (originally Jeff Podos, Sarah Huber, Luis De Leon, Antony Herrell, and myself) have shown that these large and small G. fortis morphs at one site (El Garrapatero) have a bimodal beak size distribution (many large and many small individuals with relatively few intermediates), have different diets, manifest different feeding performances (bite force), sing different songs, show different responses to songs, mate assortatively (large females with large males and small females with small males), experience disruptive selection (intermediate birds have lower survival), and show limited gene flow (based on microsatellite DNA). Stated plainly, these two morphs seem to be part of the way to becoming separate species, presumably through the same mechanisms as those that drove the radiation as whole.

The two El Garrapatero G. fortis morphs.

All of the above effects were demonstrated at a site (El Garrapatero) that is removed from any human settlements and therefore experiences little direct human influence (although indirect influences from introduced species are present). What happens when these two morphs – on their way to potentially become separate species – contact a growing human population? We were able to explore this question in a paper published in PRSB in 2006 by obtaining long term records (1964-2005) of G. fortis beak sizes from Academy Bay, a site immediately adjacent to the rapidly growing town of Puerto Ayora on Santa Cruz Island. This analysis was made possible through data collected by David Snow in 1963-1964, Hugh Ford in 1968 (data was being collected for me as I was being born!!!), the Grants and their colleagues (1970s-1980s), and our own samples (2004 and onward). Analysis of these data showed that the beak size bimodality currently seen in G. fortis at El Garrapatero was also present at Academy Bay in the 1960s but not thereafter. The two morphs at Academy Bay thus seemed to have fused together into a single hyper-variable population in concert with the dramatic increase in human population density at that site.

That is not a native food!

We proposed in the 2006 paper that fusion of the two G. fortis morphs at Academy Bay was the result of humans introducing food types that were accessible by finches of all beak sizes, thus turning the separate adaptive peaks into a long adaptive ridge spanning different beak sizes. On such a ridge, selection against intermediate birds should disappear and their increasing abundance should eliminate the bimodality. We provided support for this hypothesis in a paper in Evolution in 2011 that showed how the naturally strong (confirmed at El Garrapatero) associations between diets, beak sizes, bite forces, and gene flow that presumably drive finch diversification had all become weaker at Academy Bay. In short, humans were causing “reverse speciation” or “despeciation” by turning a formerly rugged adaptive landscape with distinct fitness peaks into a broad ridge without the gaps (fitness valleys) necessary to maintain species distinctiveness.

Our 2011 paper.
This finding was where we left the story until recently. This year, we (spurred mainly by Luis) took up the problem again by making more extensive surveys in the town of Puerto Ayora to see how many finches were using human resources. Various teams of researchers and Earth Watch volunteers would walk through town in the mornings counting birds and determining what they were feeding on. Although I was already suspect the outcome, I was still rather shocked by how many finches were present in the town (more than in nature) and their incredible use of human foods – although they still found natural foods in vacant lots and gardens. I saw finches eating waffles, chips, plantains, rice, corn, fruit, ice cream cones, and many other items. I thereby gained a personal confirmation of our original intuition that finches in Puerto Ayora (Academy Bay) had access to many food types that were usable by finches of any beak size. Then came the real kicker – at El Garrapatero.

Dozens of finches of many species eating rice.

We have been work at El Garrapatero for 12 years now. During that time, the site has transitioned from a difficult-to-access and rarely used site to a very popular destination for locals and tourists. The road has been paved and extended closer to the beach, the path to the beach has been cobbled, buses and taxis roar up and down the road, and gaggles of kids and adults play on the beach. My first hint of possible impacts was the appearance of non-native fruits (passion fruit) along the roadside. I was willing to accept that this would not have a major influence on finch evolution until recently. In 2012, we filmed Galapagos 3D IMAX – narrated by David Attenborough (no I didn’t meet him – but it was cool to hear him say my name on air) – at El Garrapatero. The film crew felt that our normal site, which was away from the beach, was not very picturesque – so they asked us to set up our nets at the beach itself. I was initially skeptical because we had never netted therefore and I couldn’t be sure we could get finches. However, we quickly caught lots of finches – they even seemed more abundant than at our normal site several hundred meters inland. And they seemed attracted to us. At one point, we were waiting to film something and noticed about 20 finches that landed right beside our banding station. We pointed this out to the film crew and they quickly swung their camera boom to film the finches at close range – this became the scene that opens the finch sequence in the film. We also saw several finches attacking the food we had brought for lunch. I was intrigued by this from a filming perspective but didn’t dwell on it much from the perspective of evolution. This year, however, my opinion changed.

Team Pinzones IMAX 3D (Photo by Aspen Hendry)

A few days ago, we walked with the Earth Watch volunteers down to the beach and came across a place where finches were everywhere. We sat down and they swarmed us. Jeff would crinkle a chip bag and they would come running. Then Luis would do the same in a different place and they would run over to him, jumping up on his bag and even into his hand in hopes of getting free handouts. Nearby, other finches of several species were fighting over some plantains someone had left out. It seems that the beach is now an accepted place to feed the finches. This got me to thinking that the direct human influence at El Garrapatero is increasing dramatically and that we might – in the near future – see impacts on the finch bimodality. In particular, we documented disruptive selection (selection against intermediate beak sized birds) in 2004-2006 before all these human changes were so dramatic. My prediction is that selection now will be less disruptive– and perhaps even less so in the future as human use of the site continues to expand.

An El Garrapatero G. fortis enjoys a cracker - when it shouldn't. 
Evolution is coming undone in Galapagos. Human influences are pervasive in some places and they are expanding to new places. This is exciting as a scientist because we can now test evolutionary hypotheses using whole-ecosystem “experiments” – we can add humans and see how evolution changes. But it is depressing as a nature lover because a unique set of island life might well change dramatically. Finches will still be present, of course, but they might no longer be so diverse – at least not in sites where human influences are strong. Fortunately the government limits those impacts to restricted sites, leaving much of the archipelago free of direct human impacts (indirect effects can remain strong). This policy is reassuring because it would be a travesty if unique forms such as the “vampire finch” on Wolf Island were to disappear.

I will report back in another decade or so.

We were even besieged by finches during our breakfast (and they ate our chocolate bread, damn it).


Thanks to our 2014 team so far: Diana Sharpe, Jaime Chaves, Kiyoko Gotanda, Joost Raeymaekers, Luis De Leon, Sofia Carvajal, Jeff Podos, and 16 Earth Watch volunteers.

Pictures and videos: 

  • Galapagos 2014 images on FLICKR
  • All my past Galapagos images on FLICKR

Related posts: 
    • Kiyoko's blog from this year's Earth Watch expedition.

    Some earlier Galapagos posts on this blog:

    Human influences on sea lion evolution?

    Tuesday, 17 September 2013

    From Ridge to Reef: Conservation and education opportunities in Belize! Presentation at 11:30 on Friday Sept. 20th in Redpath

    As a former NEO student I am really excited to announce the possibility of a collaboration between the NEO program and a tropical field station my partner and I have built in the Maya Mountains of Belize.

    Our field station, called the T.R.E.E.S Hosting Center, has been operating since March 2013. Our facilities are set on 200 acres of Lowland Broadleaf Forest at about 200 m elevation. Most of this forest is primary growth and as it is in the foothills of the mountains there is a lot of precipitation that creates a dense rainforest. We have over a km of river (Dry Creek) that runs through our site as well as numerous tributaries. Finally, some secondary growth forest, grassland habitat, and an organic fruit orchard provide a variety of habitats and hence a very high diversity of flora and fauna species. Our site is adjacent to the Sibun Forest Reserve which together with several other reserves forms the Southern block of protected areas in Belize, consisting of thousands of hectares of intact contiguous tropical forest. We have kms of trails running throughout the site and in the making is a 4-day hiking trail that goes up into the Sibun Forest Reserve in the mountains (at about 1000 m elevation).
    T.R.E.E.S cabins and Maya mountains
    Dry Creek that runs through T.R.E.E.S 
    Our remote cameras have shown dozens of different large mammal species present on our site, including jaguar, margay, tayra, armadillos, agoutis, brocket deer, pacas, and skunks. Live trapping of small mammals and mist-netting of bats have added several species of small mammals, including several individual mouse opossums. At least 9 fish species have been identified in the river systems, more than 40 species of reptiles and amphibians have been observed on site to date (including many endemic and endangered species), and our bird list now numbers over 150 species.
    Map of Belize (star is T.R.E.E.S)

    Freshwater fish from Dry Creek

    Mouse possum
    Jaguar on field cam

    Blue-spotted Treefrog (Endangered)
    Royal Flycatcher
    White Hawk

    We can host groups of up to 30 students with accompanying professors for faculty-led field courses but we also offer our facilities to undergraduate students interested in internships or volunteer work, or graduate students pursuing studies in tropical ecology. That is where the NEO program comes in!
    To graduate students we offer field equipment for stream sampling (including minnow traps, D-frame kick nets), mist-netting of birds and bats, and small mammal trapping. Starting March 2014 we will setting up a bird-banding station that will run as a long-term monitoring site for migratory and resident bird species. Long-term herp monitoring projects for frogs and turtles is also underway.

    Bird bag Christmas Tree

    Belize, although not officially Spanish-speaking, is a country in Latin America and as such is an excellent location for NEO students to conduct graduate studies in ecology, community development, political science, and resource management. We work with professors from the University of Belize and Galen University that can act as co-supervisors for students in NEO. My partner and I (both biologists) are also at the T.R.E.E.S field station the better part of the year to help students on projects.

     If you or anyone you know might be interested in conducting research based out of T.R.E.E.S in Belize and would like more information, I invite you to see our talk at the Redpath Museum at 11:30 am this coming Friday, September 20th. You can also check out our website at or email me directly at

    I am looking forward to being part of the NEO program again!

    Vanessa Kilburn
    Director and Program Manager,
    T.R.E.E.S (Toucan Ridge Ecology and Education Society) 

    NEO graduate 2008 (Herpetology)
    Supervisor Dr. David M. Green

    Friday, 6 September 2013

    Food or Poison

    “Often there is not even a thin line between a food plant, a toxic plant and a medicine”
    Marjorie Grant Whiting, 1962

    Its all a matter of dosage” they say.

    Lets take an example from a common medicinal compound, like codeine. Codeine is one of the opioid alkaloids produced by the poppy plant and can be detected in the human blood after eating a poppy seed bagel. Its magical powers (activating opioid receptors) justify the extensive use of codeine as a painkiller, analgesic, antidepressive, sedative and cough relieve. However at very high doses codeine will kill you by respiratory depression. The importance of dosage can be observed in many relationships between humans and plants. While the dosage issue might come off as common knowledge for many, we drinkers like our plant brews and distillates in the rage of 4 – 40 % alcohol, the parallels to other plant-animal interactions might not be so obvious.

    After studying a beetle that loves cycad toxins, we might have found parallels to the human relationship to medicinal/drug plants. The beetles seek out the cycad plant when the new foliage is being produced and voraciously feed and mate on the plant. They actually sequester the cycads toxins as means of defense and upon threat they will expose a drop of hemolymph from the leg-joints. The tiny drop of hemolymph contains high concentrations of the plant toxins. This surely shows that the beetle is a cycad specialist and can deal with the plant’s toxicity. But when we looked at the relationship a bit closer we found that the insect does not feed on the leaves with highest concentrations of toxins as we predicted. They rather choose a lower range of dosage from which they take their fix. Our data suggest that the high concentrations are still protecting the youngest leaves even from these cycad-loving beetles. Just as in the human-plant interactions, the beetle benefits from a particular chemical compound present in the plant but only at a certain dosage.

    The dosage dependent manner of plant-animal relationships is probably based on the enzymatic capacity of the animal in question. Intoxication arises from saturation of the detox capacity of the herbivore.

    So why doesn't the plant produce more of these toxins if they are so effective? Well, no one really knows, but it could be due to the cost of production or a matter of autotoxicity. The plant cells are also vulnerable to the deleterious effects of these toxins if they are not properly controlled.
    And why doesn't the insect increase its enzymatic capacity to be able to feed on the most toxic leaves? Maybe there is no need, we have not observed any predator feasting on these aposematic beetles despite their local abundance.
    Plants produce a plethora of secondary metabolites many with the ability to deter herbivores and pathogens. Sometimes the same compounds that effectively deter one set of organisms will be mediating the interactions with others. How do these plant-insect relationships arise? Why are some insect groups more prone to tolerating a specific type of plant chemistry?
    So many questions to explore, so many lessons to be learned.    

    Photo credits: Don Windsor and Guillaume Dury.